
International Journal of Computer Trends and Technology                                                   Volume 72 Issue 9, 157-164, September 2024 

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I9P125                                                   © 2024 Seventh Sense Research Group® 

                             

                      This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

How to Secure APIs to Defend Against Emerging Cyber 

Threats to Digital Web Assets 

Piyush Dixit  
 

Director - Integrations & API Software Engineering, Cummins Inc., Indiana, USA. 

 
Corresponding Author : piyushdixitwork@gmail.com 

 

Received: 08 August 2024          Revised: 06 September 2024       Accepted: 26 September 2024             Published:  30 September 2024 

 

Abstract - Application Programming Interfaces, or APIs, enable modern businesses to exchange data and establish connectivity 

between digital systems. However, increased connectivity needs have spawned more novel security risks as more and more 

digital assets get deployed on the web. This is why API security has become paramount for any successful business organization, 

that is exposing its web digital assets on the internet. Common API security risks include things like vulnerability exploitation, 

where attackers exploit flaws in an API’s construction, or zero-day exploits that exist on the infrastructure where APIs are 

hosted or most famous DDoS attacks, where APIs are made unavailable, all these risks lead to cyber issues like unintended 

access, data breaches or data unavailability. There are several best practices to ensure API security, like API OWASP (2023 

list) top 10, API rate limiting, DDoS mitigation, payload validation, authentication mechanisms like OAuth, logging and 

monitoring to ensure accountability and traceability. The purpose of this study is to present an accomplished stepwise solution 

in the form of an API security framework for organizations that are serious about API security and want to know how and where 

they can start their journey to secure their digital assets exposed over the web, while still benefiting from them as intended 

originally. 

Keywords - API Security, OWASP top 10, OAuth, API rate limiting, DDoS, HTTPS. 

1. Introduction  
There is a considerable gap in current research about API 

security. The gap is multi-faceted, starting from the fact that 

there is no basic defined structure of what entails within the 

realm of API security to all the way up to what all the threats 

to API security that are relevant to separate the chaff from the 

wheat and most importantly how to address those threats. 

There are a multitude of definitions, practices and processes 

that are prevalent in the API security space. API security refers 

to the collection of methods, processes and software that are 

used to protect Application Programming Interfaces (APIs) 

from cyber-attacks. APIs enable communication between 

different software and deal with transferring business data 

between digital applications, which is why it is important that 

every organization building or using APIs pays special 

attention to securing APIs.  

What further adds to the gap in the current research is the 

fact that over the years organizations have become better and 

more experienced in securing their websites that are exposed 

over the internet. However, the same cannot be said when it 

comes to securing their APIs. When it comes to protecting 

APIs, there is still a long way to go for even some big 

organizations. Although websites and APIs both operate over 

OSI layer 7 using https protocol over TCP/IP, with both 

running on the same client-server architecture at their core, the 

format of data that gets exchanged between a website and a 

browser as compared to the data between an API and its 

consumer application is structurally very different. This is 

why all security measures applied to protect a website mostly 

do not fully protect APIs as well, partially may be up to an 

extent. Hence, API security warrants special attention and 

measures applied. 

It is understandable to get intimidated by API security 

requirements given their different structure as compared to 

websites. However, by any means it is not any more complex, 

though different for sure. For organizations not under targeted 

attack by a competitor or a state actor from foreign countries, 

there can be a systematic method that can be applied to ensure 

API security and protection of digital assets. The unique 

purpose of the research presented here is to present standard 

and simple-to-follow guidelines for organizations to protect 

APIs effectively and only focus on the most relevant measures 

based on the most prevalent threats.   

However, before applying a solution, it is necessary to 

understand better the problem first, which in the case of API 

security will mean understanding the nature of threats that 

exist against the APIs, posing risks to the business data they 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

158 

transport. Moreover, it is only after understanding those 

threats that it will make more sense to work via a stepwise 

approach to secure APIs and protect the data they transport. 

The stepwise approach will include the application of multiple 

processes, methods and software tools in unison to protect 

APIs.  

This means it requires intention and leadership support 

within the organization to support the vision and budgetary 

needs in accordance with the company’s risk exposure and 

spending capabilities. 

2. Overview of most Common API Threats 
2.1. Misuse of Broken Object-Level Authorization 

Typically, an API offers accessibility to different data 

objects either via the same endpoint using different identifiers 

or via different endpoints clubbed within the scope of the same 

API as a common implementation. 

 

 
     Fig. 1 Different objects, different identifiers, same endpoint  

 
  Fig. 2 API delivering different objects via different endpoints 

Figures 1 and 2 above explain both scenarios when an 

API delivers different data objects using the same or different 

endpoints. In either case, a bad actor can misuse a broken 

object-level authorization to access the data they are not 

authorized to access. 

 

For the case shown in Figure 1, a bad actor would be 

allowed to see only data for user 123. However, since object-

level authorization is missing, they can pass identifier 456 and 

access data related to user 456 as well, using the same access.  

 

For the case shown in Figure 2, a bad actor will get 

authenticated for accessing order data using the first endpoint 

but will change the endpoint within the same API to invoices 

and shall be able to access the invoice data as well, which they 

may not be authorized to access.  

 

2.1.1. Real-World Example of Breach Misusing BOLA 

A real-world incident exploiting Broken Object Level 

Authorization (BOLA) occurred in 2019 with Uber. As 

reported in multiple news articles, there was a vulnerability in 

one of Uber’s APIs that allowed attackers to access any of the 

user's data from the master database because the API 

implementation did not validate that the client sending the 

request actually had access to the user information being 

queried using the user ID parameter, the calling client could 

simply access data of any other users by simply changing the 

user ID. 

 

Another real-world case of misuse of BOLA broken object-

level authorization happened with the Fleed dating app in 

2024. BOLA vulnerabilities in Feeld’s API allowed attackers 

to access private photos and chats of other users by sending 

different IDs in the URL for other users. 

 

2.2. Misuse of Broken Authentication of an API 

It will not be an overstatement that misuse of broken or 

week authentication is the most common threat that exists 

against the majority of the APIs due to poor authentication 

practices implemented in the construction or hosting of an 

API. What is surprising is that it is the most basic and possibly 

the easiest to mitigate risk out of all other threats, yet it 

remains the most exploited one. Broken authentication occurs 

when the authentication mechanism applied to secure an API 

either does not exist or is flawed or is week, resulting in 

unauthorized access, where attackers can assume the identities 

of legitimate users. 

 

The most common way broken authentication is misused 

is for the APIs that use static API keys to authenticate the 

client or consumer of the API. These static keys are often 

expected to be appended in the API endpoint, which often gets 

passed in clear text as part of the http URL. It is very easy for 

a man-in-the-middle type set-up to capture these keys and then 

misuse them later for accessing data via the API. The 

challenge with these keys is the fact that there is no other way 

to differentiate the calling party from a malicious actor. If the 

key that is being passed by both is the same, the API will 

authenticate the calling consumer, as shown below in Figure 

3.   

 
Fig. 3 Attacker using same API key as genuine consumer 

  

These API keys are retrieved by hackers, typically using 

man-in-the-middle attacks, sometimes by accessing breached 

data sold over the dark net. Another way a broken 

authentication attack is manifested is by using brute force 



Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

159 

password guessing algorithms for APIs that use simple user 

ID and password-based authentication, which is different from 

static key-based authentication. Sometimes, it is an even 

worse type of API authentication where the user ID and 

password are passed in http headers as clear text, making it 

further easier to sniff and misuse to gain access to API data. 

 

Another very common API authentication type is where 

some kind of client ID and secret are used to issue an access 

token, and going forward, that access token is used repeatedly 

for some finite or sometimes infinite amount of time to 

continue authenticating the consumer to continue getting 

access to API data. Now, this one is certainly better than the 

other two discussed so far, as it is not based on any static key 

or clear text user ID or password. However, it comes with its 

own set of weaknesses that can be misused to gain 

unauthorized access, compromising the API security. The 

main issue with token-based authentication is the token itself, 

more precisely, how the token lifespan is managed. Many 

times, tokens do not have a definite amount of time since the 

generation after which they expire, which means a token of 

that kind is similar to a static key and can continue to be 

misused. Another problem with tokens that can lead to misuse 

is improper revocation of tokens, which leads to tokens 

staying valid even though the expectation is for them to expire. 

All these in the hands of trained attackers are means to a 

misuse of an API. 

 

2.3. Misuse of Unrestricted API Resource Consumption 

Unrestricted resource consumption misuse happens when 

an API does not limit the use of its underlying resources like 

throughput, payload size, network bandwidth consumed, 

CPU, memory, and storage without proper controls. Attackers 

exploit this vulnerability to execute Denial of Service (DoS) 

attacks by overwhelming the API with a high volume of 

requests, ultimately leading to resource exhaustion, making 

the API partially or fully unavailable to legitimate users, 

resulting in business loss. This requires high operation effort 

and hence cost to manage to scale accordingly and results in 

high billing of infrastructure.  

 

 
Fig. 4 DDoS due to unrestricted resource consumption 

Figure 4 shows how an attacker uses unrestricted resource 

consumption to launch a DDoS attack on an API that has not 

implemented checks to avoid and restrict the usage of its 

resources. As seen either with different slave hosts or 

sometimes even with the same host, an attacker can launch a 

bogus flurry of multiple http requests to flood the API server. 

Since the API server does not have any restrictions to protect 

against this tsunami of requests, it ends up denying genuine 

requests sent by legitimate users to do business using the API, 

which is its original objective. The impact of this is not only 

restricted to not being able to serve genuine requests, but it 

impacts complete backend infrastructure where API is hosted 

or deployed, and that infrastructure offers various resources 

that are consumed by the API to run the business logic 

implemented and fetch and deliver the data.  

 

All this backend underlying infrastructure that involves 

things like CPU, memory, network bandwidth, etc., gets 

overused. To address it, constant intervention is needed from 

operations personnel managing the API hosting to beef up the 

infrastructure to meet the demand. This not only involves the 

cost to pay for the effort of operations but also requires 

incurring additional infrastructure cost that comes with 

beefing it up.  

 

2.4. Misuse of Insufficient Logging and Monitoring 

Misuse of insufficient logging and monitoring happens 

when an API implementation fails to deploy enough logging 

and monitoring of API activities, in turn making it difficult to 

detect threats and respond to security incidents like overuse of 

resources or, broken authentication or unauthorized access, to 

name a few. Lack of proper mechanisms to record and review 

activities within an API typically includes issues like missing 

logs, inadequate log details, or unavailability of continuous 

monitoring. The impact manifests twofold, where the inner 

workings of API, like high infrastructure resource 

consumption, are not highlighted in time, leading to a big 

failure and two, when a bad actor tries to exploit the API and 

the data it serves, there are not enough means to detect that. 

 

Sometimes logging is there, but it is not adequate in terms 

of capturing key details like user IDs or IP addresses or, 

payload structures or timestamps. Logging may capture error 

messages as a bare minimum most of the time, but missing 

these key pieces of information does not leave many options 

to address the threat in the long term. There is no traceability 

to establish any sort of accountability for appropriate lawful 

interventions.  

 

Capturing unique attributes like IP addresses or user IDs 

or the http headers and payload structures adds more character 

to the incident. It helps boil down to a more pinpointed root 

cause, which enables quick and long-term solutions as 

opposed to hit and trial that are both short-term and sometimes 

totally ineffective in nature to address the actual root cause of 

the incident. 



Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

160 

Sometimes integrity of logs is questionable because the 

logs can be easily tampered with or can be inserted with false 

information, compromising their reliability. This plainly 

happens due to blatant disregard for safeguarding the logs by 

ensuring limited and restricted access to them and restricting 

any updates after first writing.  

 

It is noteworthy that this restriction is needed not only for 

unauthorized access from external bad actors but is equally 

necessary to safeguard rogue actors from within the company 

who may be operating under the feeling of personal vendetta 

against the company. 

 

Last but certainly not least, by any means, is the lack of 

monitoring that results in the exploitation of APIs going 

unchecked and unaddressed. API implementations could have 

state-of-the-art logging, as discussed above.  

 

However, if there is no monitoring and alerting 

mechanism, then there is no way to act immediately on an 

attack and either fully stop it or at least prevent it from 

happening to mitigate the damage. Monitoring is key to acting 

in time and avoiding impact due to an attack. 

 

3. The Solution to Common API Threats 
3.1. Address Broken Object-Level Authorization 

Step 1 is, at the time of design of an API or at least during 

implementation, thoroughly identify all the different objects 

that are served via the API. This could be in different forms, 

like there could be different data objects that an API is 

delivering utilizing multiple endpoints that are clubbed within 

the same API implementation. Another variation could be that 

the API is serving different data records, that are identified by 

unique and distinct identifiers. The third variation could be 

multiple http methods like GET, POST, PUT and DELETE 

that are supported by some API to enable the execution of 

different CRUD operations.  

 

Step 2 is to first, on paper, create an access control matrix 

that highlights different variations of different objects that 

exist within an API implementation and against each of those 

object variations, it also highlights respective user groups or 

user roles or, if applicable, individual users and associated 

respective IDs that are allowed to access the data within 

corresponding objects. 

  

Step 3 is to utilize an authentication and authorization 

solution that allows the implementation of this object roll-

based access control matrix. A tool that offers implementing 

authorization capabilities will ensure that only authorized user 

roles for a particular object within any API are allowed to 

access the data underneath. Authorization is something that 

happens after the authentication. If authentication identifies 

the validity of who the calling party is, then authorization 

ensures that they can access only the information they are 

entitled to. 

 
Fig. 5 Object level restricted access control in action 

 

Figure 5 shows how properly implemented object-level 

access control shall work in action. As depicted in the 

diagram, when user “ABC123” sends a request to access 

Orders data, the access is granted, given that this particular 

user ID is authorized to access Orders data per the access 

control matrix created in step 1. But the same does not happen 

when the same user, “ABC123”, sends a request to access 

Invoice data; in that case, the access is not granted, and the 

request is rejected because, per the matrix, this user ID is not 

authorized to access Invoice data, and API will not deliver it. 

The way to implement authorization is to have a tool typically 

referred to as authorization server software that implements 

and manages the matrix of access control. When real-time live 

calls are made to an API, it is the authorization server that does 

the job of ensuring that access to the data is only granted per 

the authorization rules established in the matrix. If there are 

any anomalies, it denies the access request for that particular 

object.  

  

 
Fig. 6 Workflow showing access control using an authorization server 

 

Figure 6 shows the flow that takes place for a typical 

implementation of role-based object-level access control 

while using authorization server software. As seen in the 

diagram, the API-consuming client makes the first request, 

and it sends that first request to the authorization server, which 

first authenticates the caller. Once the caller is identified, the 

authorization server will look up the authorized accesses that 

are permitted for this identified user, and it will issue an 



Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

161 

authentication token and an authorization ID, which, going 

forward, will dictate what level of access and what type of 

objects this particular user can access via the API. 

 

The calling API consumer, in the third step, makes a call 

to the API using the authentication token and authorization 

code, which are both embedded into the request that is being 

sent from the consumer to the API. The API extracts the 

authentication token and authorization code and, in Step 4 

makes a call to the authorization server to validate both. It is 

only after the API receives the confirmation response from the 

authorization server, that access is being granted to the 

consumer and API controls, and the level of access is strictly 

according to the authorization code. This is how companies 

can safeguard against the misuse of broken object-level 

authorization. 

 

3.2. Address Broken Authentication of an API 

The first and foremost thing that needs to be done to 

protect against broken authentication is to eliminate the 

utilization of static key-based or user ID and password-based 

authentication mechanisms for APIs. In today's day and age, 

OAuth 2.0 has emerged as an effective and trustworthy 

authentication solution for APIs. It offers more dynamic and 

granular control over managing access to API resources. 

 

 
Fig. 7 Client registration with OAuth server 

 

As seen in Figure 7, the very first step that an API calling 

client or consumer needs to do in a typical OAuth 

authentication-based API implementation is to register itself 

with the OAuth server. This registration process creates a 

unique special entry for that client or consumer in the OAuth 

database. This registration entry is typically centrally 

managed within the OAuth server by the administrators of the 

API. In response to this registration request by the client, the 

OAuth server responds back with a uniquely generated client 

ID and client Secret, that identifies this API consumer or 

client. Since this registration is maintained centrally through 

the OAuth server, it becomes very easy to revoke the granted 

access for the clients in a matter of a minute in the event of a 

breach or misuse. 

 

The expectation for the client or the API consumer is to 

hold on to this newly issued client ID and client secret and 

store it somewhere on its side. Every time when the client 

makes a call in future, post registration with the OAuth server, 

it will be required to send these client IDs and secret pair along 

with its API request to authenticate itself and get authorized to 

access the API. Another important step here is to implement 

the functionality on the API side of the codebase that enables 

the API to check with the OAuth server every time when a 

request comes from a client.  

 

It is important to focus on building processes within the 

company to control and manage the access within the OAuth 

tool. A centralized admin operations team typically does this 

within a company that is always ready to act on a moment’s 

notice if some accesses need to be removed from the OAuth 

server for a calling consumer or client of an API in case of 

misuse. What makes this team and their control more effective 

is the existence of a robust monitoring and alerting system that 

tips them off about unauthorized access as and when it 

happens on a live API.  

 

Once the API client is being registered in the OAuth 

server, after, there is a complete flow of actions that takes 

place when the client tries to access an API with OAuth being 

in the middle of the solution. It could be explained by a simple 

five steps flow that happens between three parties involved, 

first being the client or the consumer of the API requesting the 

access, second being the authentication and authorization 

server and third being the API itself that receives the request 

from the client and renders the requested data or allows the 

client to perform requested CRUD operation on the expected 

data object. 

 

 
Fig. 8 Client validation done by the API using the OAuth server 

 

As shown in Figure 8 an API Consumer or client makes 

the very first call to the OAuth server and sends its client ID 

and secret embedded within that call to identify itself to the 

OAuth server. The OAuth server uses those credentials to 

locate the client registration entry in its database. It looks up 



Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

162 

specific accesses that the client is authorized to have on 

resources and objects exposed by the API delivering the data. 

Once the OAuth server validates the client, then it responds 

back to the client with an access token an authorization ID. 

The client extracts them both from the response and appends 

those in the request it sends to the API to perform CRUD 

operations. API, while keeping this request on hold, initiates a 

request to the OAuth server in parallel to validate the token 

and ID sent by the client and on successful approval from the 

OAuth server, API allows to perform the requested operation 

by the client. 

 

One most important steps that need to be done in the 

implementation of the OAuth to protect APIs is to ensure there 

is a very mature token management setup both systemically 

and process-wise. From a systems perspective, all the tokens 

shall have a limited lifetime from a few minutes to a few days 

at max and shall expire after that, requiring a new token. From 

a process perspective, there shall be periodic audits within the 

company to review accesses that are allowed for different 

clients per the registration in the OAuth database. 

 

3.3. Address Unrestricted API Resource Consumption 

Implementation of rate limiting of different kinds 

depending upon the implementation of the API is the foremost 

solution for addressing this threat on APIs. Rate limiting is 

putting policies on top of the API implementation that monitor 

for usage statistics of an API. When it goes above a certain 

limit, as defined in the rate-limiting policies, then the 

connection is terminated to free up the API resources.  

 

 
Fig. 9 Rate limiting in action to cut connection when violated 

 

As shown in Figure 9, a very simple rate-limiting policy 

that checks for the same client sending more than 999 requests 

in an hour is effective in cutting the connection for that client 

without impacting any other connection. In the case shown in 

this figure, a bad actor has gained access to an authorized 

legitimate client and has modified the client to blast API 

implementation with more than 999 requests within an hour, 

which goes above the set rate limiting policy on the API, 

which ensures that it stays within the limit.  

 

Another common scenario that benefits from rate limiting 

is the size of the payload request being sent by the client to the 

API server. This shall be within certain maximum size limit 

boundaries to keep the I/O utilization by the API within the 

boundaries of the set infrastructure capacity. 

 

 
Fig. 10 Rate limiting cutting the connection with large file size 

 

As seen in Figure 10, a hacked client tries to overwhelm 

the API server by sending a very large sized file, which will 

require heavy I/O and memory utilization on the API server, 

resulting in other genuine requests facing a scarcity of server 

resources. The simple rate limiting policy that watches out for 

any file being sent in the request that sizes over 5MB will 

immediately disconnect the thread and will not let the file land 

on the API server and not let it process this heavy file. 

 

Another key variation of rate limiting policy is 

implementing a time-out setting on an API. This setting 

watches out for processing time for a single request or a 

process thread within the API. If that exceeds the set threshold 

processing time limit, then the policy kills the thread and stops 

any further execution for that request to ensure there is no 

resource exhaustion on the API server. Long-running requests 

that may require high processing due to a wrong input or stuck 

thread can consume significant CPU, memory, and other 

infrastructure resources, potentially affecting the performance 

of other requests getting served by the same API. 

 

 
Fig. 11 Time out setting killing the thread above 30 seconds 



Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

163 

As seen in Figure 11, it is clear how the time-out policy 

works to safeguard the burnout of server resources. A bad 

actor can hack a genuine client and force it to send malicious 

payload or faulty characters that may result in the API 

processing times increasing significantly or, even worst, a 

stuck thread situation on the API server, which mostly does 

not get resolved on its own unless there is some manual 

intervention to kill the thread to free up the resources. Setting 

up time-out limits offers an automated mechanism to detect 

such long-running requests or processes. It allows the policy 

to terminate such sessions and free up resources to be accessed 

by other genuine requests, protecting API from going into self-

denial of service-type situations affecting business usage and 

sometimes company revenue. 

 

3.4. Address the Issue of Insufficient Logging and 

Monitoring 

The first step to do this is to have a centralized logging 

and monitoring tool implemented in the company. The second 

step is to make this tool accessible and connected with API 

implementations across the company. The API shall have the 

logic to post the logs with appropriate details at periodic 

checkpoints within the process flow of the API and not only 

for error logging purposes but also for logging other relevant 

information like IP, timestamps, payload, etc.  

 
Fig. 12 API logging data into centralized log server 

 

As seen in Figure 12, an API with clearly identified 

checkpoints within its flow posts key details like IP addresses, 

Client ID, timestamps, and HTTP headers to the central 

logging server, which later offers this data for all kinds of real-

time mitigation actions that can be taken by a team or software 

monitoring the logs or it can be used for doing a retrospective 

analysis in future to make informed decision on infrastructure 

sizing or other interventions needed to improve the 

performance and reliability of the API.  

 

No logging can be complete without appropriate 

monitoring and alerting mechanisms built on top of it. Hence, 

it is of equal importance to ensure there are alerts implemented 

and people or automation software are acting on top of those 

alerts when one is triggered. Ensure that the logs are fully 

secure and that only authorized personnel can access the logs. 

For monitoring as well restrict the edit access to limited 

personnel.  

 

4. Stepwise Approach to Address Common API 

Threats 
Table 1 presents a stepwise approach to plan and execute 

the strategy for safeguarding APIs against main threats that 

compromise the integrity and functioning of APIs. Using this 

approach will ensure that the APIs are protected against the 

most well-known threats that often are overlooked, resulting 

in massive data and business loss.  

 
Table 1. Stepwise approach 

Step Description 

1 Implement OAuth 2.0 

2 Build object role-based access control matrix. 

3 
Use an authorization server to manage object-

level access. 

4 Periodically audit access and authorization data. 

5 Implement various rate-limiting policies. 

6 Implement adequate logging and monitoring. 

 

5. Conclusion 
These basic safeguards that are discussed so far are 

surprisingly very effective in protecting against threats, if not 

all then still most of the attacks and threats that exist against 

APIs. The majority of the breaches happen not due to very 

sophisticated attacks but due to not having even very basic 

safeguards in place. But API security is an ongoing, never-

ending process. These safeguards work as a solid starting 

point. However, there is always a need for constant evaluation 

and, review and audit of the risk exposure of a company, and 

according to changing landscape, there is always a decent 

margin to implement modifications. Another good practice is 

to implement a robust and periodic testing mechanism to 

challenge the existing safeguards in place and determine new 

ones needed to bolster security further. Something as simple 

as open box testing with an internal team to something as 

sophisticated as complete black box testing done by 

professional penetration testing organizations are all good 

interventions. What is better for which organization solely 

depends on their risk exposure and existing threats to the 

company’s existence, but a periodic evaluation of current 

security measures of APIs within a company is a mandatory 

step in ensuring API security. 



Piyush Dixit / IJCTT, 72(9), 157-164, 2024 

 

164 

References  
[1] OWASP API Security Project, OWASP, 2023. [Online]. Available: https://owasp.org/www-project-api-security/ 

[2] OWASP Top 10 API Security Risks, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0x11-t10/ 

[3] The Ten Most Critical API Security Risks, OWASP, pp. 1-31, 2019. [Online]. Available: https://owasp.org/API-

Security/editions/2019/en/dist/owasp-api-security-top-10.pdf 

[4] API1:2023 Broken Object Level Authorization, OWASP API Security Top 10, OWASP, 2023. [Online]. Available: 

https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization 

[5] Inon Shkedy, The Uber API Authorization Vulnerability, Traceable, 2021. [Online]. Available: https://www.traceable.ai/blog-post/the-

uber-api-authorization-vulnerability 

[6] Mark Dolan, Issue 255: Versa Director API Flaw, Feeld BOLA Vulnerabilities, Logic Flaw Risks Aircraft Disaster, API Security News, 

2024. [Online]. Available: https://apisecurity.io/issue-255-versa-director-api-flaw-feeld-bola-vulnerabilities-logic-flaw-risks-aircraft-

disaster/ 

[7] API2:2023 Broken Authentication, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa2-broken-

authentication 

[8] API3:2023 Broken Object Property Level Authorization, OWASP, 2023. [Online]. Available: https://owasp.org/API-

Security/editions/2023/en/0xa3-broken-object-property-level-authorization 

[9] API4:2023 Unrestricted Resource Consumption, OWASP, 2023. [Online]. Available: https://owasp.org/API-

Security/editions/2023/en/0xa4-unrestricted-resource-consumption 

[10] API5:2023 Broken Function Level Authorization, OWASP, 2023. [Online]. Available: https://owasp.org/API-

Security/editions/2023/en/0xa5-broken-function-level-authorization 

[11] API6:2023 Unrestricted Access to Sensitive Business Flows, OWASP, 2023. [Online]. Available: https://owasp.org/API-

Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows 

[12] API7:2023 Server Side Request Forgery, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa7-

server-side-request-forgery 

[13] API8:2023 Security Misconfiguration, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa8-

security-misconfiguration 

[14] API9:2023 Improper Inventory Management, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa9-

improper-inventory-management 

[15] API10:2023 Unsafe Consumption of APIs, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xaa-

unsafe-consumption-of-apis 

[16] Authorization Servers, Okta Developer, 2024. [Online]. Available: https://developer.okta.com/docs/concepts/auth-servers/ 

[17] OAuth 2.0 and OpenID Connect Overview, Okta Developer, 2024. [Online]. Available:  https://developer.okta.com/docs/concepts/oauth-

openid/ 

[18] David Neal, An Illustrated Guide to OAuth and OpenID Connect, Okta Developer, 2019. [Online]. Available:  

https://developer.okta.com/blog/2019/10/21/illustrated-guide-to-oauth-and-oidc 

[19] API2:2023 Broken Authentication, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa2-broken-

authentication/ 

[20] MyF5, K000135849: Unrestricted Resource Consumption | APIs and the OWASP Top 10 guide (2023), My.F5, 2023. [Online]. Available: 

https://my.f5.com/manage/s/article/K000135849 

 

https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/

